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Abstract 30 

A major international effort has been made to monitor sun-induced chlorophyll fluorescence (SIF) 31 

from space as a proxy for the photosynthetic activity of terrestrial vegetation. However, the effect 32 

of spatial heterogeneity on the SIF retrievals from canopy radiance derived from images with 33 

medium and low spatial resolution remains uncharacterised. In images from forest and 34 

agricultural landscapes, the background comprises a mixture of soil and understory and can 35 

generate confounding effects that limit the interpretation of the SIF at the canopy level. This paper 36 

aims to improve the understanding of SIF from coarse spatial resolutions in heterogeneous 37 

canopies by considering the separated contribution of tree crowns, understory and background 38 

components, using a modified version of the FluorFLIGHT radiative transfer model (RTM). The 39 

new model is compared with others through the RAMI model intercomparison framework and is 40 

validated with airborne data. The airborne campaign includes high-resolution data collected over 41 

a tree-grass ecosystem with the HyPlant imaging spectrometer within the FLuorescence EXplorer 42 

(FLEX) preparatory missions. Field data measurements were collected from plots with a varying 43 

fraction of tree and understory vegetation cover. The relationship between airborne SIF calculated 44 

from pure tree crowns and aggregated pixels shows the effect of the understory at different 45 

resolutions. For a pixel size smaller than the mean crown size, the impact of the background was 46 

low (R2 > 0.99; NRMSE < 0.01). By contrast, for a pixel size larger than the crown size, the 47 

goodness of fit decreased (R2 < 0.6; NRMSE > 0.2). This study demonstrates that using a 3D 48 

RTM model improves the calculation of SIF significantly (R2 = 0.83, RMSE = 0.03 mW m-2 sr-1 49 

nm-1) when the specific contribution of the soil and understory layers are accounted for, in 50 

comparison with the SIF calculated from mixed pixels that considers only one layer as 51 

background (R2 = 0.4, RMSE = 0.28 mW m-2 sr-1 nm-1). These results demonstrate the need to 52 
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account for the contribution of SIF emitted by the understory in the quantification of SIF within 53 

tree crowns and within the canopy from aggregated pixels in heterogeneous forest canopies. 54 

 55 

Keywords: chlorophyll fluorescence, heterogeneous canopies, hyperspectral, HyPlant, radiative 56 

transfer modelling, SIF, understory. 57 

 58 

1. Introduction 59 

International efforts have been carried out to monitor fluorescence from space in global studies 60 

using different sensors (Köhler et al., 2018; Mohammed et al., 2019) and modelling approaches 61 

(Verrelst et al., 2015). One of the main challenges of the global low-resolution (over 60 m/pixel) 62 

sun-induced fluorescence (SIF) maps resides in the impact of the background components when 63 

quantifying SIF from large pixels aggregating different scene components. The first SIF global 64 

maps (Frankenberg et al., 2011; Joiner et al., 2011) were derived from the thermal and near-65 

infrared sensor for observation (TANSO) onboard the greenhouse gases observing satellite 66 

(GOSAT) (Guanter et al., 2012). A recent study has focused on downscaling SIF using the Global 67 

Ozone Monitoring Instrument 2 (GOME-2) and producing a daily corrected SIF global dataset 68 

with a spatial resolution of 0.05(Duveiller et al., 2020). The most recent SIF products based on 69 

the Orbiting Observatory 2 (OCO-2) launched in 2014 and the TROPOspheric Monitoring 70 

Instrument (TROPOMI) in 2018 provide a footprint of 1.3 × 2.25 km and 3.5 × 7 km at nadir 71 

respectively. OCO-2 and TROPOMI SIF products have the potential to provide GPP estimations 72 

for homogeneous vegetation type covers (Köhler et al., 2018; Li et al., 2018). Although these 73 

global maps were important achievements, questions were raised regarding the interpretation of 74 
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the SIF quantified from mixed pixels that aggregate vegetation, soil and shadow components 75 

(Xinchen Lu et al., 2018). In the coming years, new possibilities of improving the spatial 76 

resolution of SIF global maps open up with the upcoming launch of the ESA Fluorescence 77 

Explorer (FLEX) satellite in 2022, designed to measure the instantaneous chlorophyll 78 

fluorescence signal with a very high spectral-resolution (0.1 nm) imaging spectrometer and a 79 

spatial resolution of 300 m. This will provide a completely new opportunity to assess the 80 

dynamics of actual photosynthesis through SIF, which offers a major advance over current 81 

capabilities that can only detect potential photosynthesis as derived through passive reflectance 82 

monitored by conventional Earth-resources satellites. The spatial resolution of FLEX is not, 83 

however, sufficient to understand the confounding effects of background components that affect 84 

the quantification of vegetation SIF at the pixel level. Recent initiatives, such as the FlexSense 85 

campaign (Siegmann et al., 2019) for collecting airborne measurements at very fine resolution 86 

during the FLEX-Sentinel Tandem experiment, will contribute to the understanding and 87 

interpretation of SIF from aggregated pixels. Previous studies have attempted to interpret the SIF 88 

signal quantified at different scales, which is an important issue due to the effects of fractional 89 

vegetation cover and structure, and background (Zarco-Tejada et al., 2013). 90 

In heterogeneous forest and agricultural canopies, high-resolution images are required to enable 91 

the crowns and understory to be delineated from the background (Wagner et al., 2018). The 92 

quantification of the contribution of each pixel helps to understand and to improve the models 93 

used to quantify biophysical parameters from mixed pixels (Yu et al., 2018). The estimation of 94 

some of these parameters, such as the fraction of green vegetation (FC), leaf area index (LAI), or 95 

the fraction of absorbed photosynthetically active radiation (fAPAR), have critical implications 96 

in the estimation of Gross Primary Productivity (GPP) at the regional or global scale (Lin et al., 97 
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2018; Tagliabue et al., 2019). In fact, the impact of the understory on canopy reflectance is 98 

particularly challenging for studying complex canopies comprising different plant architectures 99 

and physiology (Eriksson et al., 2006). Recent studies have demonstrated that SIF-GPP 100 

relationships not only are significantly affected by vegetation type (Li et al., 2018; Sun et al., 101 

2018) but even vary within the same kind of vegetation (Migliavacca et al., 2017). These studies 102 

concluded that finer resolution SIF observations were required to improve the accuracy of the 103 

models. However, it remains unclear how the covariation between SIF and GPP is affected by 104 

mixed vegetation from landscape to global scales (Sun et al., 2017), although it has been shown 105 

that the canopy structure plays a dominant role in the SIF-GPP relationship (Dechant et al., 2020; 106 

Duveiller et al., 2020). Therefore, it is critical to quantify the contribution of each sub-pixel scene 107 

component in mixed canopies that are characterised by a heterogeneous distribution of trees and 108 

understory when working with satellite images at medium and low spatial resolutions.  109 

Furthermore, temporal changes in the physiological condition and composition of the understory 110 

also affect the relationships between satellite data and vegetation properties, due to mixed pixel 111 

effects. This is especially the case at medium and low spatial resolutions, which alter temporal 112 

relationships, as demonstrated by Hornero et al. (2020). In that study, Sentinel-2 data was used 113 

to show an inverse relationship between vegetation indices and the increase in the disease 114 

incidence quantified from trees affected by Xylella fastidiosa (Xf) infection due to understory 115 

effects. The results demonstrated that the decrease in tree density, caused by the disease, produced 116 

an increase in the understory fraction, resulting in a controversial increase in the Normalized 117 

Difference Vegetation Index (NDVI) in the affected fields. 118 

In this context, models are essential to relate observed optical properties to leaf biophysical and 119 

biochemical attributes and to analyse the effect of heterogeneous canopy structures at different 120 
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spatial resolutions (Wu and Li, 2009). Several methods have been proposed to calculate 121 

biochemical traits from hyperspectral reflectance, including scaling-up and model inversion 122 

methods that couple leaf and canopy transfer models (Verrelst et al., 2018). For instance, recent 123 

studies (Melendo-Vega et al., 2018) have used a coupled model strategy (1D PROSAIL + 3D 124 

FLIGHT) including the contribution of the grass background to improve the simulation of the 125 

spectral properties for multi-layered tree-grass ecosystems.  Other strategies include the use of 126 

linear spectral unmixing techniques tested to separate the spectral properties of forest floor and 127 

overstory components (Markiet and Mõttus, 2020). Despite the progress achieved, this modelling 128 

approach does not yet include the contribution of fluorescence and the impact of the multiple 129 

scattering produced between tree and understory components and the background layer. 130 

In recent modelling studies, the chlorophyll fluorescence emission has been included at the leaf 131 

(Kallel, 2020; Pedrós et al., 2010; Vilfan et al., 2018, 2016) and canopy level in homogeneous 132 

(Atherton et al., 2019; Romero et al., 2020; Yang and van der Tol, 2018; Zeng et al., 2019) and 133 

heterogeneous forest canopies (Hernández-Clemente et al., 2017; Liu et al., 2019; Zhao et al., 134 

2016). Furthermore, previous studies have attempted to account for spatial heterogeneity using 135 

the first available model-based approximations (Zarco-Tejada et al., 2013). A more complex 136 

three-dimensional canopy radiative transfer model (RTM) – FluorFLIGHT (Hernández-Clemente 137 

et al., 2017) – was developed to parameterise the canopy structure to estimate SIF from 138 

heterogeneous forest canopies. The model is based on the combination of FLUSPECT (Vilfan et 139 

al., 2016) with the 3D ray-tracing model FLIGHT (North, 1996) to simulate multiple scattering 140 

within the canopy including the contribution of the gap and shadows between the tree crowns. 141 

Modelling results with FluorFLIGHT showed that the variability in the percentage of sunlit and 142 
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shaded vegetation and soil affects the absolute values of total SIF from aggregated pixels and 143 

therefore, the interpretation of SIF from coarse resolution images. 144 

Despite the extensive work conducted with FLIGHT (Bye et al., 2017; Hernández-Clemente et 145 

al., 2017; Montesano et al., 2015; Zarco-Tejada et al., 2019, 2018), strategies that simulate SIF 146 

in heterogeneous canopies and consider the effects of different background components, such as 147 

soil type or understory fraction, have been limited by difficulties in simulating complex canopy 148 

structures and vertical heterogeneity. To simulate SIF of complex multi-scale plant architectures, 149 

another 3D ray-tracing approach, the Discrete Anisotropic Radiative Transfer (DART) model 150 

(Gastellu-Etchegorry et al., 1996), has been proposed. This model has been recently used with 151 

data collected from a hand-held spectroradiometer to demonstrate that SIF is greatly influenced 152 

by canopy structure and understory vegetation (Liu et al., 2019). However, further research is 153 

still necessary to understand the impact of structural components on the retrieval of SIF from 154 

medium (10 ‒ 60 m/pixel) to high (0.3 ‒ 10 m/pixel) spatial resolution satellite images. Airborne 155 

sensors such as HyPlant, the first fluorescence sensor designed to support the FLEX mission and 156 

dedicated to validating the retrieval of SIF for a large canopy and different vegetation types 157 

(Rascher et al., 2015), can provide valuable information with which to model and understand 158 

better the effect of SIF signals among mixed pixels. 159 

The impact of background components on SIF might particularly affect seasonal analyses, where 160 

the temporal variation of the understory fraction is high. Forest canopies, in particular, exhibit a 161 

complex canopy structure and the distribution of the understory cover fraction mainly depends 162 

on topography, sunfleck positions, soil composition and illumination conditions (Tagliabue et al., 163 

2019). Consequently, assuming an invariant and homogeneous effect of the soil as background 164 

might increase the uncertainty of biophysical parameters retrieved from high- and medium-165 
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resolution imagery (Hornero et al., 2020; Meng et al., 2018). These previous studies have 166 

demonstrated the need to develop new modelling approaches that consider the multiple scattering, 167 

mutual shading of the crowns, variation in the soil, and shading of the background in SIF retrieval.  168 

In this study, we propose a modification of the 3D RTM FluorFLIGHT model to simulate canopy 169 

reflectance and SIF in heterogeneous canopies, including the effects of different background 170 

components, such as the soil and the understory cover fraction. In particular, we aim to i) analyse 171 

the contribution of SIF emitted by the understory in aggregated pixels using high spectral and 172 

spatial resolution imagery collected from the airborne hyperspectral HyPlant system, ii) study the 173 

impact of the variation in the understory cover fraction on the total SIF calculated at different 174 

scales. We compare this modified model with others from the Radiation Transfer Model 175 

Intercomparison (RAMI-3) exercise under the RAMI On-line Model Checker framework 176 

(ROMC) (Widlowski et al., 2008, 2007) and validate it with field and airborne data. 177 

 178 

2. Material and methods 179 

2.1. Study site and ground data collection  180 

The study was carried out in a Mediterranean tree-grass ecosystem (locally known as dehesa) 181 

located in Majadas de Tiétar (western Spain, 39°56′20″N, 5°46′28″W) (Fig. 1). The dehesa is a 182 

unique and practically endemic agrosilvopastoral system of the Iberian Peninsula, formed mainly 183 

by holm and cork oaks, with a lower stratum of grasses and shrubs, and generally shows extensive 184 

livestock use. These two strata, trees and understory, mainly define the vegetation structure in the 185 

study area. The tree layer covers approximately 20% of the surface and is predominantly 186 

composed of holm oak (Quercus ilex L. subsp. ballota) (Bogdanovich et al., submitted). The 187 
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understory grass layer is highly dynamic and is dominated by species of the three main functional 188 

plant forms of grasses, forbs and legumes (Migliavacca et al., 2017). 189 

 190 

191 
Figure 1. Location of the study site selected for the quantification of SIF through high-resolution 192 

hyperspectral imaging (left). The red shaded area represents the image coverage. The grey dots 193 

represent the 25 × 25 m plots that were sampled to obtain the biochemical and structural variables 194 

of the understory, and the white dotted circles represent the radiometric towers with FloX 195 

instruments attached measuring up- and down-welling radiance. The images on the right show 196 

the heterogeneity of the landscape and the understory within the area of study. 197 

 198 

Field measurements were taken on 24 June 2018 simultaneously with the airborne campaign 199 

described in section 2.2 to perform the image processing and model parametrisation. In particular, 200 

total incoming radiance was required for the SIF and the reflectance calculation for both empirical 201 

and simulated data. Solar irradiance data were measured at the time of image acquisition with a 202 

SIF-enabled high-resolution spectroradiometer instrument (FloX, JB Hyperspectral Devices, 203 

Düsseldorf, Germany) mounted and levelled on a 9-metre tower above the tree canopy. Two FloX 204 
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boxes were installed over two trees (Fig. 1) during the flight, and another one was also used to 205 

collect spectral data from the understory in 15 plots (transects) between these trees. Each FloX 206 

equipment consists of two sealed and isolated spectroradiometers, FULL and FLUO (Table 1). 207 

Total incoming radiation was also simulated by the SMARTS model (National Renewable 208 

Energy Laboratory, United States Department of Energy) (Gueymard, 1995, 2001), using aerosol 209 

optical depth measured at 550 nm from the AERONET (Holben et al., 1998) station over Majadas 210 

(Spain), located at a central point in the study area. A comparison between solar irradiance from 211 

different sources is presented in Fig. S1 (supplementary material). 212 

Table 1 213 

FloX specification. FULL and FLUO spectroradiometers used for the field data collection. 214 

OPTIC FULL FLUO 

Spectrometer-based model FLAME VIS-NIR QE Pro 

Wavelength range (nm) 400 – 950 650 – 800 

Spectral resolution (nm) 1.5 0.3 

Signal-to-noise ratio 250 1000 

Field of view (deg) 

(down- / up-welling radiance) 

180 / 25 180 / 25 

 215 

Biochemical and structural variables of the understory to enter into the model were obtained by 216 

destructive sampling of the grass layer in nineteen plots of 25 × 25 m located within the study 217 

area (Fig. 1). Two 25 × 25 cm grass samples were collected on each plot in areas visually 218 

identified to be representative of the variability in each plot; if the plot contained trees, one of the 219 

samples was acquired below the canopy to take into account the potential variability induced by 220 

the tree crowns (Melendo-Vega et al., 2018; Mendiguren et al., 2015). The understory leaf area 221 

index (LAI) was also measured by destructive sampling. All rooted plants within each 25 × 25 222 
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cm quadrant were collected using clippers and stored in sealed plastic bags. These were weighed 223 

in the field and then transported in a cooler to the laboratory, where subsamples were selected, 224 

and green and dry fractions were manually separated. Subsample fractions were scanned in an 225 

Epson Perfection V30 colour scanner (Epson American Inc., Long Beach, CA, USA). The leaf 226 

area was calculated automatically from the scanned images using the unsupervised classification 227 

algorithm ISOCLUS implemented in PCI Geomatica (PCI Geomatics, Richmond Hill, Ontario, 228 

Canada). ISOCLUS is based (with minor modifications) on the ISODATA method described in 229 

Tou et al. (1974). To measure the chlorophyll a (Ca), b (Cb), a+b (Cab) and total carotenoids 230 

(Cca) pigment concentration, a parallel grass sample (pigment quadrant) was taken adjacent to 231 

the quadrant where biophysical and structural variables previously described were sampled. In 232 

each pigment quadrant, the green fraction of the standing vegetation was sampled, weighed and 233 

frozen in dry ice in the field (for further details see Gonzalez-Cascon and Martin, 2018). The 234 

pigment concentrations in the homogenised grass sample were spectrophotometrically analysed 235 

in four replicates per sample using 80% (v/v) acetone as a solvent (Gonzalez-Cascon et al., 2017). 236 

Percentage of dry mass was determined as well in three replicates per sample. All samples were 237 

then placed in an oven for 48h at a constant temperature of 60 ºC to obtain their dry weight. 238 

Pigment concentrations per mass were determined in the green grass fraction material and 239 

calculated at 65 ºC. Pigment content per total leaf area (µg/cm2) was calculated combining 240 

pigment concentrations per mass determined from the pigment quadrant and parameters obtained 241 

from the contiguous quadrant as: 242 

Cab,leaf,grass =
1000 𝐶𝑎𝑏,𝑑𝑚𝑎𝑠𝑠,𝑔 𝑊𝑑,𝑠,𝑣

𝐴𝑙𝑒𝑎𝑓,𝑠
   (1) 243 

Where Cab,dmass,g (%) is the concentration of chlorophyll a + b per unit of dry mass of green grass 244 

measured in the pigment quadrant and Wd,s,v (g) and Aleaf,s (cm2) are the dry weight and leaf 245 
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surface area respectively of the green fraction of a subsample collected in the contiguous 246 

quadrant. 247 

To characterise the tree canopy, leaf properties were measured for 19 individuals by destructive 248 

sampling using a Li-Cor 1800-12 integrating sphere (Li-Cor, Lincoln, NE, USA) coupled to an 249 

ASD Fieldspec 3 spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA). 250 

Leaves were obtained from two separate branches from the upper third of the tree crown on the 251 

south and north sides. The integrating sphere protocol is described by Zarco-Tejada et al. (2005), 252 

and further information regarding this sampling method is detailed in Melendo-Vega et al. (2018). 253 

Measurements of the tree canopy LAI were derived using an LAI-2200 plant canopy analyser 254 

(LI-COR, Lincoln, Nebraska, USA). Readings were taken above and below isolated trees under 255 

direct illumination conditions with the sensor facing +/-90º to the solar azimuth angle. The 256 

FV2200 processing tool (LI-COR, Lincoln, Nebraska, USA), which provides a mechanism 257 

(Kobayashi et al., 2013) that allows correction of measurements for radiation reflected and 258 

transmitted by the foliage, was used to apply scattering corrections and to calculate LAI using 259 

crown-shape measurements derived from field images. 260 

 261 

2.2. Airborne hyperspectral and LiDAR data 262 

Airborne data collection (Fig. 2) was conducted on 24 June 2018 using the high-resolution triple-263 

coupled hyperspectral solution HyPlant v3, developed by the Jülich Research Centre (Kreis 264 

Düren, Germany) in cooperation with SPECIM Spectral Imaging Ltd. (Oulu, Finland) (Siegmann 265 

et al., 2019) and a long-range laser scanner onboard a Cessna aircraft. The HyPlant system 266 

consists of two hyperspectral modules as a combination of three pushbroom imaging line 267 
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scanners. The DUAL imager (available commercially as AisaFENIX) comprises two integrated 268 

sensors in a single housing sharing the same optics, which provides continuous spectral 269 

information covering the visible/near-infrared (VNIR) and short-wave infrared (SWIR) regions 270 

of the spectrum (380 – 2500 nm), and yielding 3.5 and 12 nm full-width at half-maximum 271 

(FWHM) spectral resolution, respectively. The FLUO module (commercially known as 272 

AisaIBIS) is an imager that acquires data between 670 and 780 nm at higher spectral resolution 273 

(Celesti et al., 2019; Siegmann et al., 2019). The hyperspectral sensors were radiometrically 274 

calibrated with an integrating sphere on SPECIM’s facilities by calculating coefficients derived 275 

from a calibrated light source and, prior to applying these coefficients, the dark frame correction 276 

was conducted. We calculated the top-of-canopy (TOC) spectral reflectance – Cluster II output 277 

as described in Siegmann et al., (2019) – from the DUAL imager in the VNIR and SWIR regions 278 

with ATCOR4 (ReSe Applications Schläpfer, Wil, Switzerland) using available sunphotometer 279 

measurements of Aerosol Optical Depth (AOD) as input parameters. We used at-sensor-radiance 280 

from the FLUO imager (Cluster III output), extended by the application of the point-spread 281 

function deconvolution (Siegmann et al., 2019). DUAL and FLUO sensors were boresight 282 

corrected and orthorectified with CaliGeoPRO (SPECIM Spectral Imaging Ltd., Oulu, Finland) 283 

using inputs from an inertial navigation system Oxford 3052 GPS/INS (Oxford Technical 284 

Solutions Ltd., Oxford, UK) installed on-board and synchronised with HyPlant. 285 

 286 

 287 

 288 

 289 



13 

 

 290 

Figure 2. Airborne high-resolution hyperspectral flight with the HyPlant sensors (colour-291 

infrared, {860, 650, 550 nm}) over the study area (a). Yellow squares indicate the location of the 292 

300, 25 × 25 m, scene grid selection. The different components that comprise a scene can be 293 

visually discriminated by the images acquired from b) the FLUO (false colour, {700, 754, 674 294 

nm}) and c) DUAL (colour-infrared) sensors of the HyPlant tandem and d) from the digital 295 

surface model of the LiDAR sensor. Spectral radiance extracted from tree crowns, understory 296 

(shrubs and grasses) and soil components of Hyplant DUAL+FLUO images is shown in (e). 297 

 298 
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LiDAR data were acquired using a Riegl LMS-Q780 system (RIEGL Laser Measurement 299 

Systems GmbH, Horn, Austria). A normalised digital surface model (nDSM), also known as 300 

canopy height model and generated from the LiDAR point cloud, was used to measure canopy 301 

features: height, diameter and fractional cover (FC). The nDSM product also allowed image 302 

segmentation to be performed, to separate tree crowns from the understory. 303 

The hyperspectral images had a ground resolution of 1.5 metres per pixel and allowed individual 304 

tree crowns to be distinguished from the background consisting of soil and understory vegetation. 305 

We used the images to calculate the spectral information of each scene component (Fig. 3), to 306 

calculate the NDVI (Rouse et al., 1974) and to quantify the fluorescence signal. For this, we used 307 

the O2 A-band in-filling method through the Fraunhofer Line Depth (FLD) principle (Plascyk, 308 

1975), based on a total of three spectral bands (3FLD) (Maier et al., 2003); 309 

3FLD =
Eout · Lin−Ein·Lout

Eout−Ein
   (2) 310 

where radiance L corresponds to Lin (at 761 nm), Lout (mean value of L747 and L780 spectral bands), 311 

and irradiance E to Ein (at 761 nm), and Eout (mean value of E747 and E780 spectral bands). The 312 

decision of using 3FLD is based on the successful performance of this index in previous studies 313 

(Cendrero-Mateo et al., 2016; Damm et al., 2015; Liu et al., 2015; Liu and Liu, 2014). 3FLD was 314 

calculated by using the at-sensor-radiance from the FLUO imager previously described, which 315 

does not take into account the atmospheric absorption and scattering effects. For this study, we 316 

assumed relatively low impact of these effects considering that we are assessing the relative 317 

contribution of SIF emitted by the understory to the full canopy with data collected from a single 318 

flight and acquired within 27 minutes in clear sky conditions. In addition, a comparison was made 319 

between FloX measurements and the hyperspectral images. Using all the measured data (transects 320 
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and tree-crown measurements) the relationship was reasonably strong (R2 = 0.67, RMSE = 0.12  321 

mW m-2 sr-1 nm-1), improving when the assessment was carried out using the two FloX 322 

instruments permanently installed over two tree crowns (RMSE = 0.04  mW m-2 sr-1 nm-1).   323 

The objective of using NDVI in this study is to show the behaviour of a standard and widely used 324 

vegetation index related to fractional cover, comparing the effects observed in both NDVI and 325 

SIF. The high-spatial resolution of the airborne hyperspectral images allowed the extraction of 326 

different scene components used as ground truth used for the model inversion following the 327 

methodology proposed by Zarco-Tejada et al. (2019). A Mahalanobis Distance classification  328 

(Richards, 1999) using ENVI/IDL (Exelis Visual Information Solutions, Boulder, Colorado) was 329 

also derived from the hyperspectral DUAL-sensor imagery to classify vegetation cover, soil, 330 

roads and water ponds throughout the study area. In this way, we constructed the scene grid and 331 

filtered scenes that contained roads, water or buildings. The scene grid enabled the spectral 332 

reflectance of each component to be calculated, which was then used to evaluate the behaviour 333 

of the model with different types of soil, understory variability and FC (Fig. 2). 334 

We used the tree-crown segmentation calculated from the nDSM LiDAR product to establish an 335 

external buffer of two metres, which was excluded from the analysis to avoid tree shadows, 336 

mixtures of tree branches and understory at the crown edges, and potential effects of 337 

misalignment between sensors (Fig. 3). 338 
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 339 

Figure 3. Example of a) tree-crown delineation over the b) normalised digital surface model 340 

(nDSM) and the c) True colour DUAL orthoimage. 341 

 342 

Taking into account the difference in NDVI and 3FLD values obtained from tree-crown and 343 

aggregated pixels (Fig. 4), we performed an empirical analysis over a selection of 300 scenes 344 

(Fig. 2a) that covered all the natural range found within the study area (NDVI: 0.25 – 1.00, 3FLD: 345 

0.10 – 0.95 mW m-2 sr-1 nm-1).  346 

 347 

 348 

Figure 4. Understory variability in different scenarios (colour-infrared composition; 25 × 25 m 349 

pixels along with the collected data) and how this variation affects the mean value in the NDVI 350 

(unitless) and 3FLD (mW m-2 sr-1 nm-1) indices. 351 

 352 

 353 
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To assess the contribution of SIF emitted by the understory, we compared the values obtained 354 

from tree crowns and aggregated pixels at different spatial scales (Fig. 5a). We selected the spatial 355 

resolutions of 5, 15, 25, 50 and 100 m (Fig. 5b), which were either smaller than the tree crowns 356 

or much larger and even grouped several trees within the same sampling. Figures 5c and 5d show 357 

that NDVI and 3FLD values of the scene decrease as pixel aggregation increases. The spatial 358 

resolution selected is highlighted in different colours covering different aggregation levels 359 

covering the entire range. Those resolutions were used to further analyse the contribution of the 360 

SIF emitted by the understory and tree crowns using empirical data and RTM as described below. 361 
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 362 

Figure 5. Spatial scales from 1 to 100 m (a) and its selection (b) at 5 m (green), 15 m (purple), 363 

25 m (orange), 50 m (yellow) and 100 m (blue). Aggregated values of c) NDVI and d) 3FLD 364 

(mW m-2 sr-1 nm-1) at different spatial scales from a); horizontal lines show the mean tree-crown 365 

value and the Q1-Q3 interquartile range. 366 

 367 

2.3. Modified FluorFLIGHT Model to account for the understory 368 

In this study, we extended the 3D RTM FLIGHT (North, 1996) to account for the understory 369 

layer, including the SIF contribution of the crowns from the FluorFLIGHT modification 370 

(Hernández-Clemente et al., 2017). The main reason for using this model is that it has been 371 
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previously validated in several applications for the quantification of biophysical parameters (Bye 372 

et al., 2017; Guillen-Climent et al., 2012) and plant health condition (Hernandez-Clemente et al., 373 

2017; Hornero et al., 2020; Zarco-Tejada et al., 2018). Furthermore, the computational speed of 374 

FLIGHT is relatively fast if compared to other more complex 3D models (DART, Raytran or 375 

Librat) because sunlit and shaded canopy fractions are based on simple geometrical-optical 376 

properties as reviewed in Malenovský et al. (2019). The model is available for download on 377 

https://flight-rtm.github.io. 378 

The modification, named FLIGHT8, is based on the existing theory of RTM and couples an 379 

additional layer into the 3D ray-tracing model FLIGHT to account for the understory, including 380 

changes related to SIF and the interaction between the existing and new components (Fig. 6). We 381 

considered the contribution of SIF within the understory, as well as the multiple scattering events 382 

between components. Similar to FluorFLIGHT, this approach is also coupled with the leaf 383 

fluorescence model FLUSPECT (Vilfan et al., 2016), which is a physical model based on 384 

Kubelka-Munk theory that includes the fluorescence quantum efficiency parameterisation 385 

according to its core-original model PROSPECT (Feret et al., 2008; Jacquemoud and Baret, 386 

1990). 387 

https://flight-rtm.github.io/
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 388 

Figure 6. Example tree-canopy simulations a) without and b) with understory, c) including their 389 

spectra; d) graphical representation of FLIGHT8. 390 

 391 

The Monte Carlo ray-tracing model FLIGHT was designed to rapidly simulate light interaction 392 

with 3D vegetation canopies at high-spectral resolution, to produce reflectance spectra and lidar 393 

returns for both forward simulation and use in inversion (North, 1996; North et al., 2010), and 394 

recently extended to model solar-induced fluorescence (Hernández-Clemente et al., 2017). 395 

Foliage is represented by structural properties of leaf area, leaf angle distribution, crown 396 

dimensions and fractional cover, and the optical properties of leaves, branch, shoot and ground 397 
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components. The model explicitly represents multiple scattering and absorption of light within 398 

the canopy and with the ground surface and used as a benchmark by the Radiative Transfer Model 399 

Intercomparison (RAMI) (Widlowski et al., 2007). Scattering within crown and understory 400 

components is evaluated by the Monte Carlo method of radiative transfer modelling 401 

approximation, where a photon can be stochastically either absorbed or scattered into a new 402 

direction. Outside these components, the photon trajectory simulation proceeds by a deterministic 403 

ray-tracing approach. 404 

The new model includes an additional parameterisation that defines the understory layer. The 405 

understory extends from the soil layer (Fig. 6d) to a user-defined height. More input values were 406 

added to also define the understory leaf size and its distribution (leaf angle distribution), as well 407 

as the mean one-sided total foliage area index (LAI).  At leaf level, both the existing model and 408 

the understory addition use the same equations (3) to (6) described below to calculate radiance, 409 

with appropriate values for optical and structural properties, and here detailed for understory. 410 

Within the homogeneous understory layer, the illumination of a leaf is calculated as the sum of 411 

direct and diffuse incoming light. For a leaf LUS, viewed from direction vector Ω and illuminated 412 

from vector Ω0, the contribution of the radiation leaving the surface to the detector without taking 413 

into account the fluorescence is defined as follows: 414 

𝐼𝐿𝑈𝑆
(𝜆) = 𝐼0(𝜆)𝛾𝐿𝑈𝑆

(𝜆, 𝛺0 → 𝛺)𝑃0 +
1

𝑚
∑ 𝐼𝑚(𝜆, 𝛺𝑚)  𝛾𝐹𝑈𝑆

(𝜆, 𝛺𝑚 → 𝛺)        𝑚
1 (3) 415 

where I0 corresponds to the illumination radiance of the direct solar beam at the wavelength λ, Im 416 

represents the sample of the incoming diffuse field from the Ωm direction, and γLUS denotes the 417 

bidirectional reflectance/transmittance factor for each leaf from the understory. If there is a direct 418 

path to the light source, P0 has a value 1, and 0 if not. The incoming diffuse light field is sampled 419 
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using m directions over a sphere. Each sample traces a ray from the leaf to the next interaction in 420 

that direction, or sky, and which may leave the understory canopy and so be a contribution from 421 

non-understory components; radiance from this is calculated recursively using (3). The non-422 

fluorescent scattering phase function within the understory component at wavelength λ and leaf 423 

normal vector ΩL, has been approximated using a bi-Lambertian reflectance model: 424 

𝛾𝐿𝑈𝑆
(𝜆, 𝛺𝐿 , 𝛺′ → 𝛺) = {

𝜋−1𝜌
𝑛
(𝜆)|𝛺 · 𝛺𝐿|, (𝛺 · 𝛺𝐿)(𝛺′ · 𝛺𝐿) < 0

𝜋−1𝜏𝑛(𝜆)|𝛺 · 𝛺𝐿|, (𝛺 · 𝛺𝐿)(𝛺′ · 𝛺𝐿) > 0
   (4) 425 

Following similar equations, the fluorescence contribution for an individual leaf within this layer 426 

(FL-US) is calculated using full fluorescent scattering matrices, through sampling direct and diffuse 427 

incident illumination within the excitation range from 400 to 750 nm: 428 

𝐹𝐿𝑈𝑆
(𝜆) = ∑ (𝐼0(𝑘)𝛾𝐹𝑈𝑆

(𝑘, 𝜆, 𝛺0 → 𝛺)𝑃0 +
1

𝑚
∑ 𝐼𝑚(𝑘, 𝛺𝑚) 𝛾𝐹𝑈𝑆

(𝑘, 𝜆, 𝛺𝑚 → 𝛺)𝑚
1 )750

𝑘=400      (5) 429 

where γFUS: 430 

𝛾𝐹𝑈𝑆
(𝑘, 𝜆, 𝛺𝐿 , 𝛺′ → 𝛺) = {

𝜋−1𝑀𝑏[𝑘, 𝜆]|𝛺 · 𝛺𝐿|, (𝛺 · 𝛺𝐿)(𝛺′ · 𝛺𝐿) < 0

𝜋−1𝑀𝑓[𝑘, 𝜆]|𝛺 · 𝛺𝐿|, (𝛺 · 𝛺𝐿)(𝛺′ · 𝛺𝐿) > 0
  (6) 431 

where Mb and Mf represent the backward- and forward-scattering fluorescence matrices for both 432 

photosystems PS-I and PS-II, respectively. Similar to FluorFLIGHT at tree-crown level, total 433 

measured radiance in the understory component is calculated as the sum of the reflected light 434 

(ILUS) and fluorescent emission contribution (FLUS). 435 

The other components within the scene (Fig. 6d), the fluorescence contribution within a tree 436 

crown, and the consideration of the incident diffuse field remain as described in North (1996), 437 

North et al. (2010) and Hernández-Clemente et al. (2017). The Monte Carlo formulation allows 438 

the leaf-level fluorescence contribution to be readily scaled by an estimate of local fluorescence 439 
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quantum efficiency if available.  While single constant values are used separately for understory 440 

and canopy here, other recent studies have explored separation of values for sunlit and shaded 441 

leaves, or parameterisation by leaf-level PAR (Gastellu-Etchegorry et al., 2017; Zeng et al., 2020; 442 

Zhao et al., 2016). 443 

To evaluate the included features in FLIGHT8, we compared the new understory layer as a single 444 

1D simulation with homogeneous cases from the RAMI-3 experiments (Widlowski et al., 2007), 445 

which is the most recent and updated RAMI phase built for this purpose. No crowns were 446 

considered in this comparison because there is no existing model intercomparison that accounts 447 

for a two-layer homogeneous (HOM) and heterogeneous (HET) approach; for fluorescence there 448 

is no agreed intercomparison to date. A more recent experiment, RAMI-IV, featured a completely 449 

new set of experiments for abstract canopies (Widlowski et al., 2013), but this exercise neither 450 

included any case with the HOM-HET combination nor purely homogeneous scenes. 451 

One of the difficulties in evaluating an RT model by comparison with other models is the absence 452 

of an absolute reference standard; therefore, to compare the output of the model with a reference 453 

value, an alternative truth should be identified. This truth was generated as the mean of a series 454 

of models that were identified during the third phase of the RAMI-3 exercise. The radiative 455 

transfer models DART (Gastellu-Etchegorry et al., 1996), Drat (Lewis, 1999), FLIGHT (North, 456 

1996), Rayspread (Widlowski et al., 2006), Raytran (Govaerts and Verstraete, 1998) and Sprint 457 

(Thompson and Goel, 1998) participated in the generation of the reference data (RAMIREF). 458 

To cover the entire range of the different inputs (Table S1, supplementary material), we 459 

summarised the intercomparison in 12 cases for the Bi-directional Reflectance Factor (BRF) in 460 

the principal planes and orthogonal planes by varying the solar viewing angles. Root Mean 461 
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Squared Error (RMSE) and Mean Absolute Error (MAE) were then calculated between the 462 

simulated signal and the RAMIREF. 463 

 464 

2.4 Model simulation approaches 465 

Firstly, we evaluated the SIF of the understory on a theoretical set of simulations with a single 466 

tree by varying its fluorescence quantum efficiency (Fi from 0 to 0.05) and setting the LAI to the 467 

maximum nominal value (LAI = 3). Under the tree canopy, we defined an understory layer and 468 

varied its Fi (from 0 to 0.05) and LAI (from 0 to 3). These analyses aimed to understand the 469 

contribution of the SIF emitted by the understory layer with a minimum impact from structural 470 

tree canopy variables and shadowing. 471 

A more complex scenario was then designed to evaluate the impact on the SIF calculated by 472 

aggregating the tree canopy and the understory components. For this purpose, high-resolution 473 

airborne images were used to set up the different scenes, and field measurements were taken to 474 

establish ranges of biophysical parameters and biochemical variables (Table 2). The parameters 475 

required by the models that could not be measured in the field (leaf mesophyll structure, leaf 476 

angle distribution, senescence material and fluorescence quantum efficiency) were established 477 

through previous studies using the values evaluated by Hernandez-Clemente et al., (2017) for oak 478 

trees and by Melendo-Vega et al. (2018) for the understory. 479 

Table 2 480 

Values used in the model simulation analysis. 481 

Variable Units Acronym Range 

Chlorophyll a+b content μg cm-2 Cab 0 – 64 

Carotenoid content μg cm-2 Cca 0 – 30 
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Water content cm Cw 0 – 0.03 

Dry matter content g cm-2 Cdm 0.003 – 0.018 

Senescence material Fraction Cs 0 – 0.3 

Mesophyll structure - N 1 – 3 

Fluorescence quantum efficiency - Fi 0 – 0.2 

Leaf Area Index m2 m-2 LAI 0 – 3 

Leaf Size m LFS 0.01 – 0.05 

Leaf angle distribution - LAD Spherical 

Soil reflectance ρλsoil Soil 4 samples 

Solar Zenith deg. SZA 25.84 

Solar Azimuth deg. SAA 122.89 

 482 

The inversion scheme was a multi-step LUT-based approach using NDVI, 3FLD and 650 – 800 483 

nm as described in Hernández-Clemente et al. (2017). In the first stage of the analysis, we built 484 

a lookup-table (LUT) of +400k simulations by coupling FLUSPECT-B with FLIGHT8 in 1D 485 

mode. The LUT is used to estimate leaf parameters and LAI from the tree canopy and understory 486 

independently. The inversion was carried out in different steps by minimising the merit function 487 

consecutively for LAI and leaf biochemical parameters. In the next stage, the parameterisation 488 

retrieved for each of the scenes and components was used in a second set of simulations by 489 

coupling FLUSPECT-B with FLIGHT8 in 3D mode. The topography in the simulations was 490 

simplified as flat terrain. The forward simulations were used to calculate the aggregated value of 491 

NDVI and 3FLD for the 300 scenes of 25 m selected as described in section 2.2. This last step 492 

was applied using FLIGHT8 in two different modes, accounting for the specific contribution of 493 

SIF emitted by the understory layer (full mode) and disabling the SIF emitted by the understory 494 
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(single mode). Model simulations in single-mode use only one layer for the background (assumed 495 

Lambertian) and, for this analysis, we used the mean spectral reflectance extracted from the image 496 

which includes the average proportion of soil and understory found in the study area. Finally, the 497 

model-simulated aggregated pixel, from both the full- and single-mode approaches, was 498 

compared to that extracted from the hyperspectral image. The modelling approach performed is 499 

depicted in Fig. 7. The comparison between single-mode and full-mode approach was intended 500 

to understand the theoretical contribution of the understory integrated into FLIGHT8. 501 
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 502 

Figure 7. Model simulation approach diagram. 503 

  504 



28 

 

3. Results  505 

Results from empirical approaches are presented to show the effect of the understory on NDVI 506 

and 3FLD derived from different pixel aggregation scales. Based on the need to correct these 507 

effects, we present results showing the performance of FLIGHT8 to account for the understory 508 

variations that affect the reflectance calculated from aggregated pixels. FLIGHT8 was 509 

additionally compared with other models and widely accepted reference data. 510 

 511 

3.1. Effects of the understory on airborne data calculated from aggregated pixels 512 

The comparison between the aggregated pixel and the tree-crown segmented value extracted from 513 

the airborne imagery showed the impact of the background at different scales for NDVI and 3FLD 514 

indices (Fig. 8a and 8b, respectively). In the case that the aggregated pixel includes more than 515 

one tree (Fig. 5), these are taken into account when computing the average value of the tree-crown 516 

and understory components. At a resolution of 5 m, where aggregated areas were centred on 517 

crowns (green points in Fig. 8a, b), the pixel size was smaller than the mean crown size (μØ = 518 

11.98 m), and the impact of the background was relatively low for both NDVI and 3FLD, with a 519 

high correlation between aggregated and pure crown values (R2 > 0.99; NRMSE < 0.01). The 520 

goodness of fit between tree-crown and aggregated pixels decreased with a pixel size slightly 521 

higher than the crown size (15 m), and the errors doubled with a crown size of 25 m (orange 522 

points) for NDVI (R2 = 0.47; NRMSE = 0.33) and 3FLD (R2 = 0.58; NRMSE = 0.2). To elucidate 523 

the contribution of each component at this scale, we plotted the relationship between the canopy 524 

and the understory FC (Fig. S2, supplementary material). The dispersion of points increased and 525 

diverged from a linear fitting as the soil FC increased. The contribution of each component at the 526 

same resolution (25 m, Fig. 8c and 8d) showed that the slope of the linear relationship between 527 



29 

 

the NDVI from aggregated pixels and understory was closer to the identity line than that of the 528 

tree crowns, confirming that the contribution of the understory is significant. 529 

530 
Figure 8. Relationship between airborne image data obtained from pure tree crowns and 531 

aggregated pixels from a 5 m window to a 100 m window for a) NDVI and b) 3FLD (mW m-2 sr-532 
1 nm-1). Spatial scales start at 5 m (green points) and increase to 15, 25, 50 and 100 m (purple, 533 

orange, yellow and blue points, respectively). Relationship between c) NDVI and d) 3FLD values 534 

aggregated by tree-crown and understory components, and the total aggregated value at 25 m. 535 

 536 

 537 
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3.2. The FLIGHT8 model approach to account for background effects 538 

As a previous step to the modelling approach , the performance of FLIGHT8 was analysed using 539 

controlled conditions. A comparison against other RTM models is included in supplementary 540 

material. Fig. S3 shows that the simulations obtained (dark-green line) through the range of input 541 

variables agreed in RAMI showed a similar performance to that of the models used to generate 542 

the reference data RAMIREF (dashed light-green line). The shaded yellow area displays the 543 

absolute coverage range of these models, and in all cases, the simulations with FLIGHT8 were 544 

contained within this zone. More comparison results are presented in supplementary material 545 

(Fig. S4), including the results from the RAMI On-line Model Checker (ROMC). In all cases, the 546 

observed degree of relationship between the reference value and the simulations from the 547 

modified model was very high, showing a coefficient of determination (R2) that exceeded 0.98, 548 

with a mean value of 0.99. The differences between these data sets were also minimal, and the 549 

greatest error was 0.007 for both RMSE and MAE metrics.The first set of results showed the 550 

sensitivity of aggregated pixel 3FLD to variation in the understory and tree-crown Fi and the 551 

understory LAI (Fig. 9). The total scene SIF increases with LAI and the Fi of both the understory 552 

and crowns (Fig. 9a). Understory LAI is shown to have the greatest impact on aggregate pixel 553 

SIF for the ranges shown. Within each subgroup of LAI (0.5 size step), there was a gradual 554 

increase in the variation in the aggregated pixel, which followed a similar pattern, except when 555 

the understory LAI was zero, where the scene SIF only varied depending on the tree 556 

parametrisation. For values of LAI in the understory above zero, a similar increase in SIF of the 557 

scene was observed with increasing values of understory and tree-crown Fi. Furthermore, there 558 

was a linear relationship between the SIF extracted from sunlit (Fig. 9b left) and full-crown pixels 559 

(Fig. 9b right) with respect to the aggregated pixels as a function of the variation in Fi (0 – 0.05) 560 
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of the understory and the tree crowns. The SIF signal quantified from sunlit and full-crown pixels 561 

was higher than that from 25 m aggregated pixels. The differences were greater for sunlit crown 562 

pixels, where the impact of the background was lower. For lower values of crown Fi, the relative 563 

contribution of the background for sunlit and full tree crowns increased, and the differences 564 

between SIF quantified from crown and aggregated pixels decreased. The Fi of the understory 565 

also affected the relationship, with fewer differences observed between SIF quantified from tree 566 

crowns and aggregated pixels for the understory with a higher Fi. Fig. 9.c and d show that if we 567 

try to calculate the SIF from the crown component based on the relationship between full-tree 568 

crowns and aggregated pixels, the increasing of the understory LAI reduces the correlation 569 

between them. The highest increase in NRMSE is observed with understory LAI values between 570 

0-1. These results show the contribution of the SIF emitted by the understory not only in the 571 

whole scene, but also at the tree-crown level, and illustrate the difficulties in interpreting SIF 572 

from coarse resolution images. 573 
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 574 
Figure 9. Effects of the variation in fluorescence quantum efficiency (Fi, 0 – 0.05) of the forest 575 

understory and the tree crown on the 3FLD (mW m-2 sr-1 nm-1) quantified from 25 m aggregated 576 

pixels against the a) understory LAI and b) 3FLD from tree-crowns. Either only the sunlit 577 

component (left side) or the entire crown (right side) were aggregated. c) Effects of the variation 578 

in LAI (0 – 3) of the forest understory on the relationship between 3FLD calculated from tree-579 

crowns and 25 m aggregated pixels and d) the associated R2 and NRMSE values for the linear 580 

model established for each subgroup of understory LAI.   581 

 582 

Based on the proposed modelling approach (Fig. 7), FLIGHT8 was then used to calculate NDVI 583 

and 3FLD from aggregated pixels that either did or did not account for the specific contribution 584 

of the soil and the understory layer (full or single mode, respectively; Fig. 10). The model 585 

simulations and the hyperspectral data were significantly related for NDVI (R2 = 0.95, RMSE = 586 
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0.04, Fig. 10a) and 3FLD (R2 = 0.83, RMSE = 0.03 mW m-2 sr-1 nm-1, Fig. 10b) when the model 587 

accounted for the contribution of the understory. Similar results were obtained for NDVI using 588 

the single-mode model approach, where the specific understory contribution was not considered 589 

(R2 = 0.96, RMSE = 0.04, Fig. 10c). However, based on the same assumption, 3FLD was 590 

underestimated by the model and the retrieval accuracy was significantly affected (R2 = 0.4, 591 

RMSE = 0.28 mW m-2 sr-1 nm-1, Fig. 10d). These results show the need to consider the 592 

contribution of the understory layer in assessing SIF from the aggregated pixels and confirm the 593 

ability to use RTM for modelling these effects. 594 
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 595 

Figure 10. Relationship between hyperspectral data from 25 m aggregated pixels and model-596 

simulated NDVI and 3FLD (mW m-2 sr-1 nm-1) indices accounting for the contribution of SIF of 597 

the understory (full mode, a and b, green points with orange dashed line as 1:1 relationship). The 598 

same relationships obtained from model simulations without accounting for the contribution of 599 

SIF on the understory and using the empirical reflectance of the background as soil layer (single 600 

mode, c and d, light-blue points with a green dashed line as the identity line). 601 

  602 
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4. Discussion 603 

The availability of SIF observations from space raises the need to develop and validate new 604 

approaches for modelling SIF scattering and re-absorption at the canopy level. The quantification 605 

of the fluorescence contribution to top-of-canopy radiance is challenging due to the reduced 606 

availability of studies and models with which to interpret the scattering processes within the 607 

canopy (Qiu et al., 2019; Romero et al., 2018; Yang and van der Tol, 2018; Zeng et al., 2019). 608 

Seeking to fill this gap, the results of this study show the contribution of the SIF emitted by the 609 

understory and tree crown components of the total forest canopy. A critical issue found was the 610 

selection of a model from among the available ones that can represent the main components of 611 

the forest canopy, but that avoids laborious parameterisation that hinders the retrieval of the 612 

biophysical properties of the vegetation from images (Hernandez-Clemente et al., 2014). Early 613 

attempts at using a 3D-RTM to simulate SIF from heterogeneous canopies (Hernández-Clemente 614 

et al., 2017) reported the impact of soil background on the estimation of SIF at the canopy level. 615 

Our study introduces a new factor, considering the combined effect of soil and understory 616 

vegetation that contributes to the spectral reflectance of the background of an oak grassland at the 617 

end of the spring. We used data collected with HyPlant to demonstrate empirically that the 618 

understory affects the aggregated pixel values. The higher the aggregation, the more significant 619 

were the differences between the pure tree-crown value and the aggregated pixel, and these 620 

differences became less relevant at values close to or below the mean crown size. The 3FLD and 621 

NDVI quantification were similarly affected by the difference in scale size. Hence, this study 622 

demonstrates that the spectral contribution of the understory in heterogeneous canopies might 623 

introduce large inaccuracies into measurements calculated from satellite imagery with medium 624 

and low spatial resolutions when the quantification of SIF is needed from separated components 625 

(tree crowns and understory). This aggregation increases the uncertainties in modelling SIF and 626 
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other vegetation indices on a global scale when the spatial distribution and composition of the 627 

understory varies over the seasons. In a relatively constant dominant layer (e.g. evergreen 628 

canopies), phenological changes of the understory through the season translate into changes in 629 

the canopy structure that alter the relationship between GPP and SIF (due to the SIF scattered by 630 

the canopy and the re-absorption pattern) (Ahl et al., 2006; Xiaoliang Lu et al., 2018). Even if 631 

seasonality remains unchanged, several ecosystems are characterised by a heterogeneous 632 

distribution of understory vegetation, which affects the spectral reflectance observed at coarse 633 

satellite resolutions. Although this study is carried out with constant values of solar and viewing 634 

angles, future work could consider the variation of these parameters. This is possible because 635 

FLIGHT8 allows to simulate BRF using different illumination and viewing geometries as it is 636 

shown in Fig. S3. Upcoming studies focused on the analysis of the impact of the illumination 637 

condition on the quantification of SIF will be very interesting for assessing temporal trends of 638 

SIF from different sensors. Another important parameter to consider in that case will be the 639 

adjustment of Fi for sunlit and shaded canopies which may vary depending on the short and long 640 

term light adaptation of the leaves.  641 

The quantification of SIF emitted by the tree crowns and the understory separately may not 642 

always be necessary, in particular for modelling global GPP (Joiner et al., 2014). However, for 643 

other studies such as the temporal evolution of photosynthesis related with decay, stress or 644 

disease, the physiological state of each component independently should be accurately 645 

understood (Stoy et al., 2019). This approach could also be useful for partitioning fluxes of 646 

canopy components, which is very challenging from eddy covariance techniques. It is therefore 647 

critical that we are able to separate components to take into account the evolution that each of 648 

them has over time. The relevance of assessing the contribution of SIF of the understory is 649 
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consistent with the model simulation reconstruction from terrestrial laser scanning shown by Liu 650 

et al. (2019).  Future studies should consider the impact of spatial and temporal variations driving 651 

global plant dynamics. For these cases, it would be interesting to analyse the sensitivity of these 652 

factors on different SIF proxies such as iFLD (Alonso et al., 2008), pFLD (Liu and Liu, 2015), 653 

SFM (Mazzoni et al., 2012; Meroni et al., 2010) or NIRv (Badgley et al., 2017; Dechant et al., 654 

2020).  655 

The empirical results of the contribution of SIF emitted by the understory and tree crowns on the 656 

quantification of SIF from Hyplant images were in agreement with model simulations. The 657 

simulation analysis was performed with a new RTM that includes the option to analyse the 658 

contribution of the SIF emitted by the understory and the tree crowns. Although in this work it 659 

has not been possible to validate SIF through the RAMI experimental exercises because they are 660 

not yet available, RAMI-3 has allowed us to validate the model's ability to represent a new layer. 661 

Using a straightforward set of simulations, we show that the higher the LAI of the understory, the 662 

smaller the effect of the soil, and therefore, the SIF of the canopy is more similar to the SIF of 663 

the scene (Fig. 9), reducing the impact of pixel size variation and scene heterogeneity. However 664 

separation of crown and understory is also complicated, and beyond approximately an understory 665 

LAI of 0.5 the understory SIF contribution dominates the aggregated pixel. These results are 666 

consistent with the significant contribution of the SIF understory to the TOC SIF reported by Liu 667 

et al. (2019) using an ASD hand-held spectrometer in an open-canopy boreal forest. Based on the 668 

need to understand the contribution of the understory at the landscape level, this study shows the 669 

accuracy of full tree-crowns SIF calculated from 25m aggregated pixels with the highest increase 670 

in NRMSE observed with understory LAI from 0 to 1.  These results strengthen the interpretation 671 

of the aggregated pixel covered by previous studies in which only the soil effect was taken into 672 
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account (Hernández-Clemente et al., 2017; Zarco-Tejada et al., 2018). The evaluation of a larger 673 

set of simulations against the airborne imagery (Fig. 10) revealed the capabilities of FLIGHT8 to 674 

model different ecosystem components. The comparison between airborne and model-simulated 675 

retrievals showed different effects on NDVI and 3FLD under the two proposed approaches: 676 

model simulations that included only one layer as background (single-mode) or those that 677 

accounted for the specific contribution of soil and understory layers (full-mode). The relationship 678 

between model-simulated and airborne NDVI was similar (R2 = 0.95, RMSE = 0.04) in both cases 679 

(Fig. 10 a, c). This result was predictable as the presence of soil and vegetation cover is included 680 

in both approaches. In full-mode simulations, we account for the contribution of two different 681 

layers, understory and soil (Fig. 10 a). In single-mode simulations, the layer of the soil is the 682 

spectral response of the background extracted from an image with a pixel size of 1.5 m in which 683 

both components (soil and vegetation) are mixed (Fig. 10 c). The main difference was observed 684 

in the quantification of SIF, as model simulations in single mode do not take into account the 685 

fluorescence emission of the understory. In this case, the relationship between airborne and 686 

model-simulated 3FLD significantly improved using FLIGHT8 in full mode (R2 = 0.83, RMSE 687 

= 0.03 mW m-2sr-1nm-1) in comparison with simulations performed in single mode (R2 = 0.4, 688 

RMSE = 0.28 mW m-2sr-1 nm-1) (Fig. 10. b, d), because the canopy model does not include the 689 

understory contribution of the fluorescence emission in single mode. The results demonstrated 690 

that understory SIF could substantially contribute to the total canopy SIF quantified from 691 

aggregated pixels in open-canopy forests. Moreover, FLIGHT8 can be used to resolve the 692 

problem of interpreting information on a large scale when the effect of the understory plays a 693 

fundamental role, such as in tree-grass ecosystems or open forests. 694 
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The heterogeneous spatial distribution of trees and understory layers in the landscape is one of 695 

the main factors that inherently introduces uncertainty into the retrieval of biophysical parameters 696 

of vegetation through models (Eriksson et al., 2006; Yu et al., 2018). The estimation of these 697 

parameters simultaneously contains many implications for the recovery of GPP (Li et al., 2018) 698 

and even the interpretation of GPP using SIF as a proxy varies greatly depending on the type of 699 

cover (Tagliabue et al., 2019). This study highlights the need for a solution that allows the 700 

contribution of the understory in aggregated pixels and its impact on the fluorescence estimation 701 

of the total canopy to be modelled. Future studies should also take into account the vertical 702 

variability of the maximum rate of carboxylation (Vcmax), which has been proven to be a key 703 

parameter for estimation CO2 assimilation in crops (Camino et al., 2019) and the xanthophyll 704 

cycle included in the extended version of Fluspect (Vilfan et al., 2018). 705 

The results of this study contribute to understanding how the quantification of SIF from 706 

aggregated pixels can be improved for mixed tree, grass and woodland ecosystems, which cover 707 

a large part of the globe (up to 33% according to Hanan and Hill (2012)). The understory of 708 

Mediterranean oak woodlands is mainly covered by grasslands, where light availability and 709 

nutrient-induced changes alter plant functional traits and canopy structure and control the 710 

relationship between GPP and SIF (Migliavacca et al., 2017). However, in other types of 711 

ecosystems with higher density, the contribution of the understory may be different. Hence, future 712 

efforts should focus on assessing the contribution of the SIF emitted by the understory in the 713 

quantification of total canopy SIF in other types of ecosystems and forest complexities. These 714 

studies will be decisive for the ability to measure and interpret SIF at the global scale. 715 

  716 
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5. Conclusions 717 

The results presented here demonstrate that the fluorescence signal calculated from medium 718 

spatial resolution is significantly affected by variations in the understory. The contribution of 719 

understory SIF increased rapidly with understory LAI values, dominating the total scene SIF for 720 

LAI greater than 0.5. Beyond this range, the correlation strength of crown SIF with aggregated 721 

pixel SIF reduces, requiring modelling of the system if separation of crown and understory SIF 722 

is necessary, for example in assessing forest health or seasonality. Thus, the use of medium- to 723 

low-resolution images for assessing the physiological condition of forest and agricultural 724 

canopies requires taking into account the contribution of the SIF emitted by the understory when 725 

working with heterogeneous ecosystems. 726 

This study demonstrates the need to include the contribution of SIF emitted by the understory in 727 

the interpretation of SIF emitted by forest canopies with RTM approaches. The use of FLIGHT8, 728 

which integrates the effect of fluorescence (FluorFLIGHT), has allowed a new model to be 729 

developed that takes into account the effect of the understory to model SIF signals and 730 

discriminate this information in each of its components. The model has been tested by 731 

intercomparison with other models and validated empirically using high spatial and spectral 732 

resolution imagery. Due to its spatial variability throughout, our study area enabled 733 

comprehensive evaluation. Multitemporal analysis of the impact of phenological changes of the 734 

understory over the vegetation canopy is beyond the scope of this study but will be the central 735 

topic of a follow-up contribution. 736 

The results suggest that this model could be used to improve the interpretation of SIF at the tree 737 

canopy level when we need to separate between different aggregated components and account for 738 

the background effects. The ability to quantify SIF from coarse resolution images is a further 739 
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advantage for quantification of the model at a global scale. Future studies should be focused on 740 

the potential use of 3D-RTM to provide information at a high-spectral resolution and frequency 741 

from current and future satellite missions as OCO-2, TROPOMI or FLEX-Sentinel. 742 
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Appendix A. Supplementary material 762 

 763 

Figure S1. Comparison between different sources of solar irradiance information. 764 

Table S1 765 

Input range for FLIGHT8 according to the model intercomparison. 766 

Parameters 

Simulation* 
Solar Zenith 

Angle (deg) 

Scattered 

Radius (m) 

Leaf Area 

Index (m2 m-2) 

Canopy 

Height (m) 

Leaf Angle 

Distribution 

Leaf  

ρ/τ (%) 

Soil 

ρ (%) 

HOM01,TUR,ERE,NR1,00 0 0 1  1 Erectophile 0.5/0.5 1.0 

HOM03,DIS,ERE,RED,50 50 0.05 3 2 Erectophile 
0.0546/ 

0.0149 
0.127 

HOM05,TUR,ERE,NR1,60 60 0 5 1 Erectophile 0.5/0.5 1.0 

HOM12,DIS,ERE,NR1,30 30 0.05 2 1 Erectophile 0.5/0.5 1.0 

HOM13,DIS,PLA,RED,20 20 0.1 3 2 Planophile 
0.0546/ 

0.0149 
0.127 

HOM03,TUR,UNI,NIR,20 20 0 3 1 Uniform 
0.4957/ 

0.4409 
0.159 

* HOM (Homogeneous) 767 
  TUR (Turbid), DIS (Discrete) 768 
  ERE (Erectophile), PLA (Planophile), UNI (Uniform) 769 
  NR1 (Purist corner), RED (Red, solar domain), NIR (Near-infrared, solar domain) 770 
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 771 

Figure S2. Example of the contribution of scene components for a 25 m window based on the 772 

relationship between canopy and understory fractional cover (FC) and soil FC shown as different 773 

intensity orange points.  774 
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 775 

Figure S3. Comparison of FLIGHT8 with other RTMs using the set of scenarios proposed by the 776 

RAMI intercomparison exercise. The results of RAMIREF are shown by the dashed light-green 777 

line and those from other models within the shaded area.  778 
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 779 

 780 

Figure S4. Global bi-directional reflectance factor 1-to-1 comparison (top) and histogram 781 

differences (bottom) for principal (left) and orthogonal planes (right) within the ROMC-generated 782 

results.  783 
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List of figure captions 1152 

Figure 1. Location of the study site selected for the quantification of SIF through high-resolution 1153 

hyperspectral imaging (left). The red shaded area represents the image coverage. The grey dots 1154 

represent the 25 × 25 m plots that were sampled to obtain the biochemical and structural variables 1155 

of the understory, and the white dotted circles represent the radiometric towers with FloX 1156 

instruments attached measuring up- and down-welling radiance. The images on the right show 1157 

the heterogeneity of the landscape and the understory within the area of study. 1158 

Figure 2. Airborne high-resolution hyperspectral flight with the HyPlant sensors (colour-infrared, 1159 

{860, 650, 550 nm}) over the study area (a). Yellow squares indicate the location of the 300, 25 1160 

× 25 m, scene grid selection. The different components that comprise a scene can be visually 1161 

discriminated by the images acquired from b) the FLUO (false colour, {700, 754, 674 nm}) and 1162 

c) DUAL (colour-infrared) sensors of the HyPlant tandem and d) from the digital surface model 1163 

of the LiDAR sensor. Spectral radiance extracted from tree crowns, understory (shrubs and 1164 

grasses) and soil components of Hyplant DUAL+FLUO images is shown in (e). 1165 

Figure 3. Example of a) tree-crown delineation over the b) normalised digital surface model 1166 

(nDSM) and the c) True colour DUAL orthoimage. 1167 

Figure 4. Understory variability in different scenarios (colour-infrared composition; 25 × 25 m 1168 

pixels along with the collected data) and how this variation affects the mean value in the NDVI 1169 

(unitless) and 3FLD (mW m-2 sr-1 nm-1) indices. 1170 

Figure 5. Spatial scales from 1 to 100 m (a) and its selection (b) at 5 m (green), 15 m (purple), 25 1171 

m (orange), 50 m (yellow) and 100 m (blue). Aggregated values of c) NDVI and d) 3FLD (mW 1172 

m-2 sr-1 nm-1) at different spatial scales from a); horizontal lines show the mean tree-crown value 1173 

and the Q1-Q3 interquartile range. 1174 

Figure 6. Example tree-canopy simulations a) without and b) with understory, c) including their 1175 

spectra; d) graphical representation of FLIGHT8. 1176 

Figure 7. Model simulation approach diagram. 1177 

Figure 8. Relationship between airborne image data obtained from pure tree crowns and 1178 

aggregated pixels from a 5 m window to a 100 m window for a) NDVI and b) 3FLD (mW m-2 sr-1179 
1 nm-1). Spatial scales start at 5 m (green points) and increase to 15, 25, 50 and 100 m (purple, 1180 

orange, yellow and blue points, respectively). Relationship between c) NDVI and d) 3FLD values 1181 

aggregated by tree-crown and understory components, and the total aggregated value at 25 m. 1182 

Figure 9. Effects of the variation in fluorescence quantum efficiency (Fi, 0 – 0.05) of the forest 1183 

understory and the tree crown on the 3FLD (mW m-2 sr-1 nm-1) quantified from 25 m aggregated 1184 

pixels against the a) understory LAI and b) 3FLD from tree-crowns. Either only the sunlit 1185 

component (left side) or the entire crown (right side) were aggregated. c) Effects of the variation 1186 

in LAI (0 – 3) of the forest understory on the relationship between 3FLD calculated from tree-1187 
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crowns and 25 m aggregated pixels and d) the associated R2 and NRMSE values for the linear 1188 

model established for each subgroup of understory LAI.   1189 

Figure 10. Relationship between hyperspectral data from 25 m aggregated pixels and model-1190 

simulated NDVI and 3FLD (mW m-2 sr-1 nm-1) indices accounting for the contribution of SIF of 1191 

the understory (full mode, a and b, green points with orange dashed line as 1:1 relationship). The 1192 

same relationships obtained from model simulations without accounting for the contribution of 1193 

SIF on the understory and using the empirical reflectance of the background as soil layer (single 1194 

mode, c and d, light-blue points with a green dashed line as the identity line). 1195 

Figure S1. Comparison between different sources of solar irradiance information. 1196 

Figure S2. Example of the contribution of scene components for a 25 m window based on the 1197 

relationship between canopy and understory fractional cover (FC) and soil FC shown as different 1198 

intensity orange points. 1199 

Figure S3. Comparison of FLIGHT8 with other RTMs using the set of scenarios proposed by the 1200 

RAMI intercomparison exercise. The results of RAMIREF are shown by the dashed light-green 1201 

line and those from other models within the shaded area. 1202 

Figure S4. Global bi-directional reflectance factor 1-to-1 comparison (top) and histogram 1203 

differences (bottom) for principal (left) and orthogonal planes (right) within the ROMC-generated 1204 

results. 1205 


